Unit 2 - Digital System Design

FINITE STATE MACHINES (FSMS)

- For a review of this topic in detail, please refer to <u>ECE2700 – Synchronous Sequential Circuits</u>.
- State Machine representation: we will use the Algorithmic State Machine (ASM) Charts.
- **Example:** Sequence detector. It generates z=1 when it detects the sequence 01101. Once the sequence is detected, it looks for a new sequence.

✓ <u>Video</u>: convert bubble form into ASM (also: VHDL coding of ASM).

Note: The output z can change as soon as the input x changes.

Example: This is a more complex FSM (Mealy-type). Given the VHDL code, we complete the FSM diagram, the timing diagram and provide the state table, excitation table, excitation table, and circuit implementation.

 \checkmark Timing Diagram: Note that the outputs x, w, z can change as soon as the input x changes.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-5736: Reconfigurable Computing

Summer I 2022

DATAPATH CIRCUIT

• The components required here vary widely and depend on your specific application. Typical components found include arithmetic circuits, special encoders/decoders, counters, registers, shift registers, etc.

DIGITAL SYSTEM DESIGN

Usually, you start with the specifications of your circuit. Then, you define the I/Os. After this, it is up to you to decide on
what components to use, how to interconnect them, and how to control it via a FSM.

VHDL CODING

Refer to <u>VHDL for FPGAs Tutorial</u> for a complete tutorial on VHDL design that includes slides and examples (VHDL code). For the description of digital systems in VHDL, the following concepts are of utmost importance:

- FSM Description: VHDL coding of ASMs:
 - ✓ <u>VHDL on FPGA Tutorial Unit 6 slides</u>: How to write VHDL code for FSMs.
 - ✓ <u>Video</u>: VHDL description for ASM chart (sequence detector 01101), synthesis and simulation in Vivado.
- Interconnection of components: hierarchical design (port map): <u>VHDL for FPGA Tutorial Unit 4 slides</u>.
- **Testbench generation**: Refer to <u>VHDL for FPGAs Tutorial Unit 5 slides</u> for detailed explanation. Also, look at the examples in Unit 6 and Unit 7 of this VHDL for FPGAs Tutorial.
- **Use of generic components**: These components are ubiquitous in digital system design: counters, registers, shift registers. To optimize design time, we recommend using parameterized components (VHDL for FPGAs Tutorial Unit 5 examples):
 - ✓ *n*-bit register with enable and synchronous clear: my_rege
 - ✓ Counter modulo-N with enable and synchronous clear: my_genpulse_sclr
 - \checkmark *n*-bit parallel access (right/left) register with enable and synchronous clear: my_pashiftreg_sclr

Usually, we want to use these components with different variations: bit-width, direction (shift registers), modulus (counters). To properly use parametric components, refer to <u>VHDL for FPGAs Tutorial – Unit 7 slides</u> (generic map).

- **Digital System Design**: Refer to the following material:
 - ✓ <u>VHDL for FPGAs Tutorial Unit 7 slides</u>: Detailed step-by-step example (stopwatch design).
 - ✓ VHDL for FPGAs Tutorial Unit 7: VHDL code for a variety of digital systems (e.g.: bit-counting, sequential multiplier).
 - \checkmark <u>Video</u>: Bit-counting circuit (*n* = 8): step-by-step VHDL coding, synthesis and simulation in Vivado.
 - ✓ <u>Video</u>: 4x4 Sequential Multiplier: step-by-step VHDL coding, synthesis and simulation in Vivado.
 - ✓ <u>Video</u>: 2x2 Sequential Multiplier: VHDL coding, synthesis, simulation, implementation, and testing on ZYBO Board.

DESIGN EXAMPLES

BIT-COUNTING CIRCUIT (COUNTING 1'S) (<u>Parametric VHDL Code</u>) (<u>Video</u>: VHDL coding in Vivado, n=8)

- This circuit counts the number of bits in register A whose value is '1'. Example (n=8): A = 00110111 \rightarrow C = 0101.
- The sequential algorithm (pseudo-code) is shown. Here, we can follow this procedure to design a digital system:
 - Sketch the block diagram: We need start and done signals to indicate when the process starts and finishes. We also include input (Data for the Register A) and output data (Count).
 - Sketch the high-level control mechanism (state machine) for the Bit-counting circuit. Here, you can include combinational blocks as well as common synchronous blocks (registers, shift registers, counters).
 - ✓ With the block diagram and high-level state machine, we can draft the components and their signals in the datapath. From the high-level state machine, we can design the actual FSM that includes actual signals controlling the components.

• Components: Behavior on the clock tick.

m-bit counter (modulo-n+1): If E=0, the count stays. *n*-bit Parallel access shift register: If E=0, the output is kept.

if E = 1 then
if $s_l = 'l'$ then
$Q \leftarrow D$
else
$Q \leftarrow \text{shift in 'din' (to the right)}$
end if;
end if;

- Timing diagram (*n*=8, *m*=4):
 - ✓ Examples shown in figure:
 - If A = 00110110, then C = 0100.
 - If A = 00001110, then C = 0011.
 - \checkmark <u>Video</u>: Bit-counting circuit (*n*=8): Completing timing diagrams (For DA=10110110 and 00000011)
 - ✓ To complete timing diagrams for digital systems, the following procedure can be followed: For every clock cycle:
 - a. Complete the registered signals (i.e.: A, state, C). These signals are kept constant during a clock cycle.
 - b. Complete the signals that are not outputs of the FSM, but that are inputs of the FSM (z).
 - c. Complete the FSM outputs. Note they might change at any moment during the clock cycle.
 - d. For the next clock cycle, go to 'a.'

EXAMPLE: 7-SEGMENT SERIALIZER (VHDL code)

DIGITAL SYSTEM (FSM + Datapath circuit)

- Most FPGA Development boards have a number of 7-segment displays (e.g., 4, 8). However, only one can be used at a time.
- If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one digit at a time on the 7-segment displays.
- Since only one 7-segment display can be used at a time, we need to serialize the four BCD outputs. In order for each digit to appear bright and continuously illuminated, each digit is illuminated for 1 ms every 4 ms (i.e. a digit is un-illuminated for 3 ms and illuminated for 1 ms). This is taken care of by feeding the output z of the 'counter to 0.001s' to the enable input of the FSM. This way, state transitions only occur each 0.001 s.
- In the figure, the enable signals for the four 7-segment displays are active low (this is usually the case).

Component: Behavior on the clock tick.

```
0.001 s counter (modulo-10<sup>5</sup>): Free running counter
```

```
if Q = 10<sup>5</sup> - 1 then
        Q ← 0
        else
        Q ← Q+1
        end if;
end if;
* z = 1 if Q = 10<sup>5</sup>-1
```

Algorithmic State Machine (ASM) chart: This is a Moore-type FSM.

EXAMPLE: SEQUENTIAL MULTIPLIER (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=4)

UNSIGNED MULTIPLICATION: SEQUENTIAL ALGORITHM

DIGITAL SYSTEM (FSM + Datapath circuit)

Iterative Multiplier Architecture. Register P: sclr: synchronous clear. Here, if E = sclr = 1, the register contents are initialized to 0. Parallel Access Shift Registers A and B: If E = 1: $s_l = 1 \rightarrow \text{Load}$, $s_l = 0 \rightarrow \text{Shift}$. The result is computed in at most n + 1 cycles.

 $b_0 \\$

EP ←

0

S2

S3

done $\leftarrow 1$

s

E ← 1

z

• Components: Behavior on the clock tick:

2 <i>n</i> -bit register: If E=0, the output is kept.	Parallel access shift register: If $E=0$, the output is kept. A (2n bits, left shift), B (n bits, right shift)							
if $E = 1$ then	if $E = 1$ then							
if sclr = 1 then	if $s_1 = 1'$ then							
$Q \leftarrow 0$	$Q \leftarrow D$							
else	else							
$Q \leftarrow D$	$Q \leftarrow \text{shift in 'din' (to the left (A) or right (B))}$							
end if;	end if;							
end if;	end if;							

• **Timing Diagram:** *n* = 4.

clock	_																Ĺ
resetn				I I I	 	 		 	 		 					 	
DA		111:	1		 					Х	1111					 	!
DB		111:	1	1	1 					Х	1101					1	
s			1	 	 				 				1			 	
А	00	00	OF	1E	3C	78	F0	EO	Е0	E0	0F	1E	3C	78	F0	EO	E0
В	0000	0000	1111	0111	0011	0001	0000	0000	0000	0000	1101	0110	0011	0001	0000	0000	0000
state	S1	S1	S2	s2	S2	S2	S2	S 3	S1	S1	<u>\$2</u>	S2	S2	S2	S2	S3	S1
P	00	00	00	0F	2D	69	E1	E1	E1	00	00	0F	0F	4B	сз	C3	C3
done									1								
Z		 		 	1 1 1											 	
T.					1											1	
_				1	1						1					, i	1
E					1						1		1				1
sclr	2										<u> </u>						
F D				 	 		7				 						
1							L		L L			L			L		J :